6 Line Segments and Rays

<u>Definition</u> (line segment \overline{AB}) If A and B are distinct points in a metric geometry $\{S, \mathcal{L}, d\}$ then the line segment from A to B is the set $\overline{AB} = \{M \in S \mid A - M - B \text{ or } M = A \text{ or } M = B\}$.

- **1.** Let $A(-1/2, \sqrt{3}/2)$ and $B(\sqrt{19}/10, 1/10)$ denote given points of line ${}_{0}L_{1}$. Give a graphical sketch for line segment \overline{AB} .
- **2.** Let $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ denote three points which belong to the type II line $_cL_r$

in the Poincaré Plane. If $x_1 < x_3 < x_2$ show that then $C \in \overline{AB}$.

3. Let $A(x_1, y_1)$ and $B(x_2, y_2)$ lie on the type II line $_{C}L_{r}$ in the Poincaré Plane. If $x_1 < x_2$ show that $\overline{AB} = \{C = (x, y) \in _{C}L_{r} \mid x_1 \le x \le x_2\}$.

<u>Definition</u> Let \mathcal{A} be a subset of a metric geometry. A point $B \in \mathcal{A}$ is a passing point of \mathcal{A} if there exists points $X, Y \in \mathcal{A}$ with X - B - Y. Otherwise B is an extreme point of \mathcal{A} .

4. Let $A(x_1, y_1)$ and $B(x_2, y_2)$ denote two points in metric geometry, and let $C \in \overline{AB}$. If $C \neq A$ and $C \neq B$ explain is point C passing point or extreme point of \overline{AB} .

<u>Theorem</u> If A and B are two points in a metric geometry then the only extreme points of the segment \overline{AB} are A and B themselves. In particular, if $\overline{AB} = \overline{CD}$ then $\{A, B\} = \{C, D\}$.

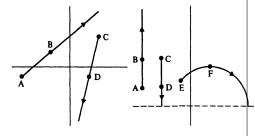
5. Prove the above theorem. [use proof by contradiction to show that A is not a passing point of \overline{AB} ...]

<u>Definition</u> (end points, length of the segment \overline{AB}) The end points (or vertices) of the segment \overline{AB} are A and B. The length of the segment \overline{AB} is $\overline{AB} = d(A, B)$.

Definition (ray $pp[A, B) = \overrightarrow{AB}$)

If A and B are distinct points in a metric geometry $\{S, \mathcal{L}, d\}$ then the ray from A toward B is the set

$$pp[A,B) = \overrightarrow{AB} = \overline{AB} \cup \{C \in \mathcal{S} \mid A-B-C\}.$$



<u>Definition</u> (vertex of the ray) The vertex (or initial point) of the ray $pp[A,B) = \overrightarrow{AB}$ is the point A.

<u>Theorem</u> If A and B are distinct points in a metric geometry then there is a ruler $f: \overrightarrow{AB} \to \mathbb{R}$ such that $pp[A,B) = \overrightarrow{AB} = \{X \in \overrightarrow{AB} \mid f(X) \ge 0\}$

6. Prove the above theorem.

$$[\{X \in \overrightarrow{AB} \mid f(X) \ge 0\} \subseteq \overrightarrow{AB}; \overrightarrow{AB} \subseteq \{X \in \overrightarrow{AB} \mid f(X) \ge 0\}]$$

<u>Definition</u> $(\overline{AB} \cong \overline{CD})$ Two line segments \overline{AB} and \overline{CD} in a metric geometry are congruent (written $\overline{AB} \cong \overline{CD}$) if their lengths are equal; that is $\overline{AB} \cong \overline{CD}$ if AB = CD.

<u>Theorem</u> (Segment Construction). If \overrightarrow{AB} is a ray and \overrightarrow{PQ} is a line segment in a metric geometry, then there is a unique point $C \in \overrightarrow{AB}$ with $\overrightarrow{PQ} \cong \overrightarrow{AC}$.

- **7.** Prove the above theorem. [let f be coordinate system for \overrightarrow{AB} with A as origin and B positive...]
- **8.** In the Poincaré Plane let A(0,2), B(0,1), P(0,4), Q(7,3). Find $C \in \overrightarrow{AB}$ so that $\overline{AC} \cong \overline{PQ}$.
- **9.** Let \underline{A} and \underline{B} be distinct points in a metric geometry. Then $\underline{M} \in \overrightarrow{AB}$ is a midpoint of the line segment \overline{AB} if and only if $\underline{AM} = \underline{MB}$. (Remember that here \underline{AM} means $\underline{d}(A,M)$.) (a) If \underline{M} is a midpoint of \overline{AB} , prove that $\underline{A} \underline{M} \underline{B}$. (b) Show that \overline{AB} has a midpoint \underline{M} , and that \underline{M} is unique. (c) Let $\underline{A}(0,9)$ and $\underline{B}(0,1)$. Find the midpoint of \overline{AB} where \underline{A} and \underline{B} are points of (i) the Euclidean plane; (ii) the Hyperbolic plane.

13

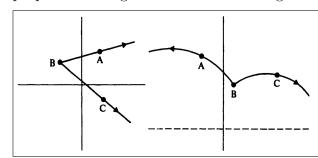
10. determine are the statements true or false: (a) $\overline{AB} = \overline{CD}$ only if A = C or A = D. (b) If AB = CD then A = C or A = D. (c) If $\overline{AB} \cong \overline{CD}$, then $\overline{AB} = \overline{CD}$. (d) If $\overline{AB} \cong \overline{CD}$, then $\overline{AB} = \overline{CD}$. (e) A point on \overline{AB} is uniquely determined by its distances from A and B.

11. In a metric geometry prove that (i) if $C \in \overrightarrow{AB}$ and $C \neq A$, then $\overrightarrow{AC} = \overrightarrow{AB}$; (ii) if $\overrightarrow{AB} = \overrightarrow{CD}$ then A = C.

12. In a metric geometry $(S, \mathcal{L}, \underline{d})$, prove that $\underline{\text{if }} A - \underline{B} - C$, P - Q - R, $\overline{AB} \cong \overline{PQ}$, $\overline{AC} \cong \overline{PR}$, then $\overline{BC} \cong \overline{QR}$.

7 Angles and Triangles

It is important to note that an angle is a set, not a number like 45°. We will view numbers as properties of angles when we define angle measure in section: "The Measure of an Angle".



<u>Definition</u> (angle $\angle ABC$)

If A, B and C are noncollinear points in a metric geometry then the angle $\angle ABC$ is the set

$$\angle ABC = \overrightarrow{BA} \cup \overrightarrow{BC} = pp[B,A) \cup pp[B,C).$$

<u>Lemma</u> In a metric geometry, B is the only extreme point of $\angle ABC$.

1. Prove the above lemma.

 $[Z \in \angle ABC, Z \neq B \Rightarrow Z \text{ is a passing point of } \angle ABC...]$

Theorem $(\angle ABC = \angle DEF \Rightarrow B = E)$ In a metric geometry, if $\angle ABC = \angle DEF$ then B = E.

2. Prove the above theorem.

 $[{B} = ... = {E}]$

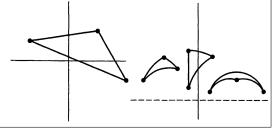
$\underline{\textbf{Definition}} \ (\textbf{vertex of the angle} \ \angle ABC)$

The vertex of the angle $\angle ABC$ in a metric geometry is the point B.

$\underline{\textbf{Definition}} \ (\textbf{triangle} \ \triangle ABC)$

If $\{A,B,C\}$ are noncollinear points in a metric geometry then the triangle $\triangle ABC$ is the set

$$\triangle ABC = \overline{AB} \cup \overline{BC} \cup \overline{CA}.$$



<u>Lemma</u> In a metric geometry, if A, B, and C are not collinear then A is an extreme point of $\triangle ABC$.

3. Prove the above lemma. [proof is by contradiction, suppose that D-A-E with $D,E\in\triangle ABC...$]

Theorem In a metric geometry, if $\triangle ABC = \triangle DEF$ then $\{A,B,C\} = \{D,E,F\}$.

4. Prove the above theorem. [If $X \in \triangle ABC$ and $X \notin \{A, B, C\}$ then X is in one the segments...]

<u>Definition</u> (vertices, sides) In a metric geometry the vertices of $\triangle ABC$ are the points A, B, C. The sides (or edges) of $\triangle ABC$ are \overline{AB} , \overline{BC} and \overline{CA} .

5. Prove that $\angle ABC = \angle CBA$ in a metric geometry.

In next two problems do not use last Lemma and last Theorem above.

6. Prove that if $\triangle ABC = \triangle DEF$ in a metric geometry then \overrightarrow{AB} contains exactly two of the points D, E and F.

7. In a metric geometry, prove that if A, B and C are not collinear then $\overline{AB} = \overrightarrow{AB} \cap \triangle ABC$.

Duži i poluprave

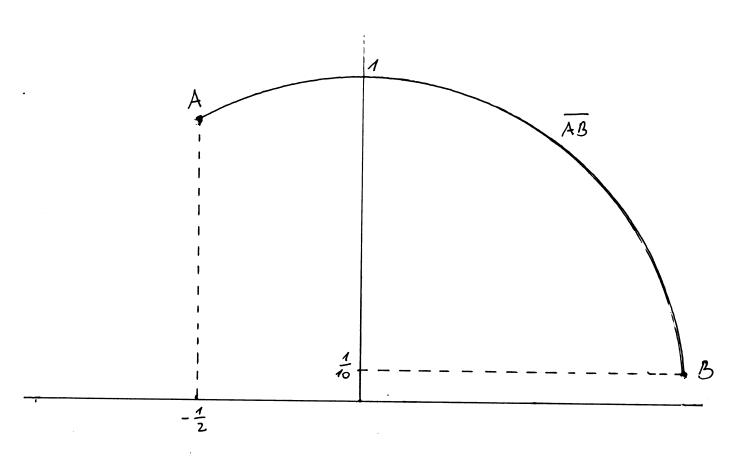
Definicija (duž)

Ako su A; B dvije vuzličite tačke u metričkoj peometrij; $\{9,2,4\}$ tada je duž od A do B skup $\overline{AB} = \{C \in \mathcal{S} | A - C - B ; l; C = A ; l; C = B\}$

Date su taîte
$$A(-\frac{1}{2},\frac{3}{2})$$
; $B(\frac{10}{10},\frac{1}{10})$ prave of.

Skicirati da AB.

$$\begin{cases} x^{2} + y^{2} = 1 \\ x^{2} + y^{2} = 1 \end{cases}$$

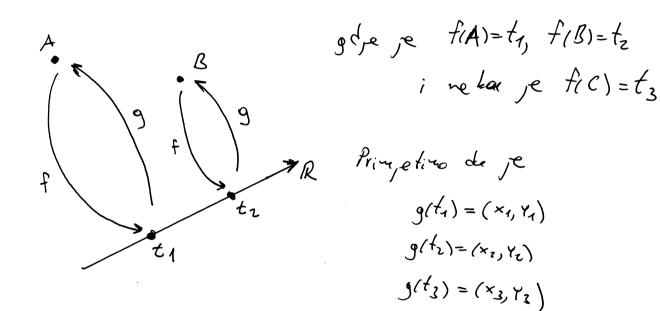


Neka su Alxi, Yi), B(xi, Yi) i C(xi, Yi) tri tacke koje pripadaju pravoj tipa II cLr u Poincavé ovo; ravni. Ako je xi<xi < xz pokazati da tada CEAB.

R. Stundardner nyera za pravu chr je fich - R (x-c+r) - 9/4 (x-c+r).

Inverse fig. $f = g: \mathbb{R} \longrightarrow cL_{r}$ $t \longrightarrow (c+r banh(t), r sech(t))$

Time, graficki imamo sljedede



kako je $y(t_1) = (C + r banh(t_1), r sech(t))$ $y(t_2) = (C + r banh(t_2), r sech(t))$ $y(t_3) = (C + r banh(t_3), r sech(t))$

to f $x_1 = C + r \tan h(t_1)$ $x_2 = C + r \tan h(t_2)$ $x_3 = C + r \tan h(t_3)$ $x_4 = C + r \tan h(t_3)$

Lad x1<x3<x2 (1) rtanh(t1) < rtanh(t3) < rtanh(t2)

 $t_1 < t_2 < t_2$ \Longrightarrow $t_1 * t_2 * t_2$ \Longleftrightarrow point Teor. 17 pieta. leberg. $\underset{=f(A)}{\leftarrow}$ $\underset{=f(A)}{\leftarrow$

.

.

Neka su $A(x_1, Y_1)$ i $B(x_2, Y_2)$ tacke koje pravoj tipa $\| cL_v \|$ u Poincaré-ovoj ravni. Ato je $x_1 < x_2$ poka za bi da $\overline{AB} = \left\{ C(x, y) \in cL_v \mid x_1 \le x \le x_2 \right\}$

 $c = c + (x-c)^2 + y^2 = r^2$

Ako posmatramo tatha C čija je prva koordinata x_1 bada $y^2 = y^2 - (x_1 - c)^2 = y + y_1 = C(x_1, y_1) = C = A$

 $x > x_2 \Rightarrow C(x_2, Y_2) \rightarrow C = B$.

Ostulo je du pokužemo da A-C-B ako i samo ako xierezz (gdje je C(x,x)).

Standardra rijera $f: cL_r \rightarrow \mathbb{R}$ za pravu tipa II u Poincaré-org. ravni je $f(x,y) = \ln\left(\frac{x-c+v}{y}\right)$.

Ujednom od prethodnih zerdebeker smo odredili inverz Lijekceje f: inverz je g: R-re-Lr

 $t \rightarrow (c+rth(t), rsech(t))$

Istoristimo ore duje fje u vjesavanju zadetka.

Pretpostavino de je A-C-B. Prena teorema 17 prethodre lekcije A-C-B = f(A) * f(C) * f(B)

Označino vrijednosti fiA), fiC) i fiB) redom sa t_1 , t_2 i t_2 $f(A) * f(C) * f(B) \iff t_1 * t_2 * t_2$

Fija th(t) je strogo vastura, pa nije vajuo de li je tictzetz ili tretzeti, imarus da t1 * t3 * t2 => (c+rth(t1)) * (c+rth(t3)) * (c+rth(t2)) Kako je q(t1)= (c+rth(t1), rsech(t1)= A; A (x1, 4) g(tz) = (C+ r th(tz), r sech(tz) = B) B(x2, Y2) do je (C+v th(t₁)) * (C+v th(t₃)) * (C+v th(t₂)) $\stackrel{\text{vidi prethode:}}{=} \times_1 \times_2 \times_2$ Kako je prena pretposterci x1cx2 ×1<×<×2. Time suo potestali da $C \in \overline{AB}$ $\Leftarrow > \times_1 \leq \times \leq \times_2$ (9% of C(x, Y))

Definicija (prolazna tačka, ekstremna tačka)

Neku je d podskup metričke geometrije. Tačka BEV je prolazna tačka skupa A ako postoje tačke X i XEV sa osobinom X-B-Y. U suprotnom B je ekstremna tačka skupa A.

Nela sa A; B duje tačke metričke geometrije i neka je CEAR. Ako je C+A; C+B objasniti da li je tačka C prolazna tačka ili ekstremna tačka duži ĀB.

AB = $\{D \in \mathcal{G} \mid A-D-B \mid i \mid D=A \mid i \mid D=B\}$ Alo je $C \in AB \mid C \neq A \mid C+B \quad \text{tyder} \quad A-C-B$.

Druyim rječina postoje teiche $X, Y \in S + d. X - C - Y$ (X = A, Y = B).

Tatka C je prolazna tatka duži AB.

Ako su A: B drije tačke u metričnoj geometriji tada su jedine ekstremne tačke duži AB same tačke A; B. Precienije, alo je AB = CD tada je {A,B} = {C,O}. Skica dokaza: B X A Y koristimo dokaz kontradikcijom A između X, I duži AB, X-A-I 1° $B-X-A-Y \Rightarrow B-A-Y$ 2° $B=X \Rightarrow B-A-Y \Rightarrow B-A-Y \Rightarrow B-A-Y \Rightarrow B-A-Y \Rightarrow B-A-Y \Rightarrow AB$ # too true districts $(X, Y \in \overline{AB})$ $4^{\circ} X - A - B - Y => X - A - B$ $5^{\circ} B = Y => X - A - B$ $6^{\circ} X - A - Y - B => X - A - B$ $(X, Y \in AB)$

Slièno zu tacku B. => A; B su ekstremme trèke

Pokaziro da ni jedna druga bečka nije prolazna bačka.

ZEAB, Z+A, ZEB => A-Z-B => Z iznedu A; B

=> Z prolozna taika

A, B su dije jedine ekstremne beike duži AB

 $AB = \overline{CD}$ => $\{A,B\} = \{Z, \in AB \mid Z \}$ e electromage tacka duzi $\overline{AB}\}$ $= \{Z \in \overline{CD} \mid Z \}$ e electromage tacka duzi $\overline{CD}\}$ $= \{C,D\}.$

Definicija (krajnje tačke)

Krajnje tačke (ili krajnji vrhovi) duži AB su tačke A i B.

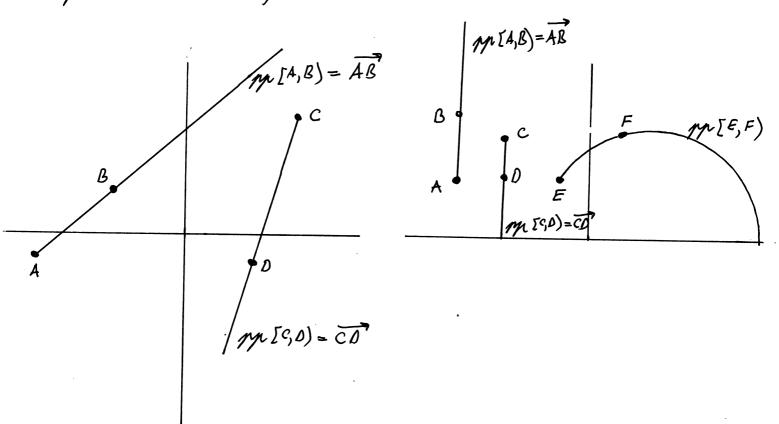
Dužinu duži AB definisemo sa AB=d(A,B).

Definicija (poluprava)

Ato su A; B različite tačke metričke geometrije {\$,2,4} tuda poluprava sa početnom tačkom A koja sadrži tačku B je skup

M[A,B) = AB = AB U { CES | A-B-C}

Prinjetimo de je poluprava pp. [A,B) = AB podskup plave p(A,B) = AB. Poluprave u Euklidoro; i Poincaré-oro; ravn; su prikazane na sljedećim slikama



Definicija (vrh ili početna tačka)

Vrh (ili početna tačka) poluprave $\overrightarrow{AB} = pp[A,B)$ je bačka A.

Teorena

Alo su A; B drije različite tačke metrične geometrije tadu posboji mjera $f: \overrightarrow{AB} \rightarrow R$ takva da $\overrightarrow{AB} = \{X \in \overrightarrow{AB} \mid f(X) > 0\}$

Skica dolaza:

f spec. box. sixt. f(A)=0, f(B)>0 $\begin{cases}
X \in \overline{AB} \mid f(X)>0 \\
X \in \overline{AB}, f(X)>0
\end{cases} \subseteq \overline{AB}$ $\times = f(X), f(B)=Y$ $\times = 0 \implies X = A \implies X \in \overline{AB}$ $\times = Y \implies X = B \implies X \in \overline{AB}$

 $0 < x < y \Rightarrow A - X - B \Rightarrow X \in AB \Rightarrow X \in AB$ $0 < y < x \Rightarrow A - B - X \Rightarrow X \in AB$

Time evi elementi od AB imaju nenegativne koordinate u odrasy na f.

Definicija Za drije duži AB i CD u metričnoj geometriji kažemo da su konguventne (sto piremo AB = CD) ako su njihove dužine jednake: tj. AB = CD ako AB = CD Teorema (konstrukcija duži) Ako su AB poluprava i PQ duž u metričnoj geometriji, tada postoji jedinstvena tučka CEAB taha da PQ=AC. Skica dokaza: f spec. boor. sat. \overrightarrow{AB} , f(A)=0, f(B)>0 $\Rightarrow \overrightarrow{AB} = \{X \in \overrightarrow{AB} \mid f(X) > 0\}$ Y = PQ, $C = f^{-1}(r)$ $V = PQ > 0 \implies C \in AB$ AC=|f(A)-f(C)|=10-r1=r=PQ => ĀC = PQ => portoji najmanje jedna tačka CEAB t. d. AC=PQ C'EAB, AC' = PQ c'EAB => f(c')>0 fic') = fic')-fia) = 1fic')-fia) 1 =Ac'=PQ=f(c)fingeling => c'=c Piera bone parboji tačno jeha bačka CEAB tahada AC = PQ. # U Poincaréono; varni date su tacke A(0,2), B(0,1), P(0,4)
i Q(7,3). Odrediti tacku CEAB takru da AC = PQ.

kj. Prvo odredimo PQ.

$$P,Q \in \{1,2\}$$
 => $PQ = \int_{H} (P,Q) = \left| \left| n \frac{-3+5}{4} - \left| n \frac{4+5}{3} \right| = \left| \left| n \frac{1}{6} \right| = \left| n 6 \right| \right|$

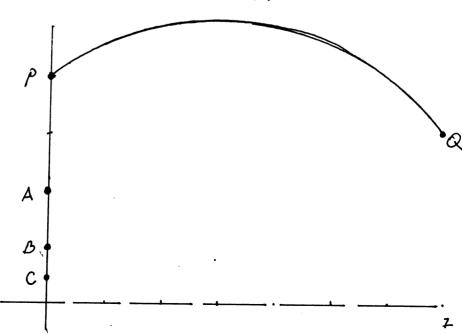
Primjetino da 43 E oL.

Kako je C(0,Y) na pravoj tipa I prave $AB = \mu(A,B)$ $d_H(A,C) = \left| \ln \frac{Y}{Z} \right|$

Da bi vrijedilo AC = PQ treba nam luž = tlu6. Time

$$\frac{Y}{2} = 6$$
 ili $\frac{Y}{2} = \frac{1}{6}$ => $Y = 12$ ili $Y = \frac{1}{3}$

Kako je $C \in \overline{AB}$ treba nam $C = (0, \frac{1}{3})$.



9. Let A and B be distinct points in a metric geometry. Then $M \in \overrightarrow{AB}$ is a midpoint of the line segment \overline{AB} if and only if $AM = MB$. (Remember that here AM means $d(A, M)$.) (a) If M is a
midpoint of \overline{AB} , prove that $A - M - B$. (b) Show that \overline{AB} has a midpoint M , and that M is unique. (c) Let $A(0,9)$ and $B(0,1)$. Find the midpoint of \overline{AB} where A and B are points of (i) the Euclidean plane; (ii) the Hyperbolic plane.
(and ME AB)
Mis midpt of AB iff AM=MB / (here AM means d(A,M))
(a) Claim: A-M-B.
Since A, M, B are collinear, one of the following holds:
A-M-B or A-B-M or M-A-B.
NOW A-B-M means AM=AB+BM, but AM=MB so AB=0
$\alpha A = B$, not so.
And M-A-B means MA+AB=MB, but MB=MA, so AB=0,
$\alpha A = B$, not so.
Hence A-M-Bs as required
(b) Claim: AB has a midpt M, and M & unique. (Lotl=AB.
Let f: l > R be rule for l with f(A) = 0, f(B)=670.
Define ME AB by M= f'(b/2). Since f is onto R,
Mexists, and since f is 1-1, M is uniquely determined
And d(A, M)= f(A)-f(M) = 0-1/2 = 1/2,
while d(M, B)= 1f(M)-f(B)= 1/2-b1= b/2.
Hence AM=MB, and Mis the unique midpt. of AB.
(c) A = (0,9) and B = (0,1). Want midgl- of AB in
(i) E, Enclidean plane; (ii) H, Hyperboliz plane.
(i) Noting A, B are on Lo, and $9-1=4$,
M=(0,5) because
$d_{E}((0,9),(0,5))=19-5]=4$ and $d_{E}((0,5),(0,1))=15-1=4$
(ii) Line is of in H. Let M be (Osm).
Then f(M) = In (m), and we want
lnm - ln I = ln 9 - ln m
or $l_n m = ln 9$, $m^2 = 9$, $m = 3$.
or $\ln m = \ln \frac{9}{m}$, $m^2 = 9$, $m = 3$. (Check: $\ln \frac{9}{3} = \ln \frac{3}{7}$)
So $(0.3) = M$ is the midpt. in \mathcal{H} .

SECTION A

A True/False (10 marks)

Tick ONE box for each question, according as the statement is true or false.

All the questions below are about a metric geometry.

Reminder: In a *metric* geometry, \overrightarrow{AB} denotes the line containing points A and B; \overline{AB} denotes the line segment from A to B, and AB denotes the distance d(A, B).

Two line segments are congruent if and only if their lengths are equal

o line segments are congruent if and only if their lengths are equal.				
		TRUE	FALSE	
A1	$\overline{AB} = \overline{CD}$ only if $A = C$ or $A = D$.	$\sqrt{}$		
A.2	If $AB = CD$ then $A = C$ or $A = D$.		V	
A3	If $\overline{AB} \simeq \overline{CD}$, then $\{A, B\} = \{C, D\}$.	·	<u> </u>	
A.4	If $A-B-C$ and $C-D-E$, then $A-C-D$.		$\sqrt{}$	
A.5	A point on \overrightarrow{AB} is uniquely determined by its distances from A and B .	/	· •	
A.6	If A , B are points, then \overline{AB} is a convex set.	\checkmark		
A7	If A , B are points, then $\{A, B\}$ is a convex set.		\checkmark	
A8	The intersection of two convex sets is a convex set.	√.		
A9	The union of two convex sets is a convex set.		$\sqrt{}$	
A10	$\overline{BC} = \overrightarrow{BC} \cap \triangle ABC.$	$\sqrt{}$		
1		•		

11. In a metric geometry prove that

(a) if
$$\overrightarrow{AB} = \overrightarrow{CD}$$
 then $A = C$.
(b) if $C \in \overrightarrow{AB}$ and $C \neq A$, then $\overrightarrow{AC} = \overrightarrow{AB}$;

SOLUTION:

(a) This came before Theorem 6.17, so if you don't use the fact that we could choose a ruler f for AB with f(A) = 0 and f(B) > 0, it's a bit long!

We have $\overrightarrow{AB} = \overline{AB} \cup \{P \in \mathcal{S} \mid A - B - P\}$, and $\overrightarrow{AB} = \overline{CD} \cup \{Q \in \mathcal{S} \mid C - D - Q\}$.

Since AB = CD, we know that $A \in CD$. Suppose $A \neq C$. Then possibilities are:

(i) C - A - D; (ii) A = D; (iii) C - D - A.

Also $B \in CD$, so (a) C - B - D or (b) C - D - B or (c) B = D or (d) B = C.

Putting these together gives 12 cases in all:

(i) B = C and C - A - D (ii) C - B - A - D (iii) C - A - B - D(iv) B = D and C - A - D (v) C - A - D - B (vi) A = D and C - B - D (vii) A = D and C - A - B (viii) C - A - D - B (viii) C - B - D - A

B = D and C-D-A (xi) C-B-D-A(xii) C-D-A-B. (\mathbf{x})

On cases (i),(ii),(vi),(viii),(ix),(x),(xi), choose points E, F so that E - B - A and C - B - AD—F. Then we must have $E \in \overrightarrow{AB}$ and $F \in \overrightarrow{CD}$, but we may choose $E \not\in \overrightarrow{CD}$ and $F \notin AB$. Hence $AB \neq CD$, giving a contradiction.

In cases (iii),(iv),(vi), we may choose E so that C-E-A; then $E \in \overrightarrow{CD}$ but $E \notin AB$. Hence $AB \neq CD$, giving a contradiction.

In (xii), $A \notin \overrightarrow{CD}$, implying $A \notin AB$, again a contradiction.

Hence A = C as required.

(b) This is a bit long. Solution available on request!

12. In a metric geometry (S, \mathcal{L}, d) , prove that if A - B - C, P - Q - R, $\overline{AB} \cong \overline{PQ}$, $\overline{AC} \cong \overline{PR}$, then $\overline{BC} \cong \overline{QR}$.

SOLUTION:

From A - B - C, we have A, B, C are collinear and (distances) AB + BC = AC. Likewise, P - Q - R means P, Q, R are collinear and PQ + QR = PR.

Now $\overline{AB} \simeq \overline{PQ}$ means AB = PQ, and $\overline{AC} \simeq \overline{PR}$ means AC = PR.

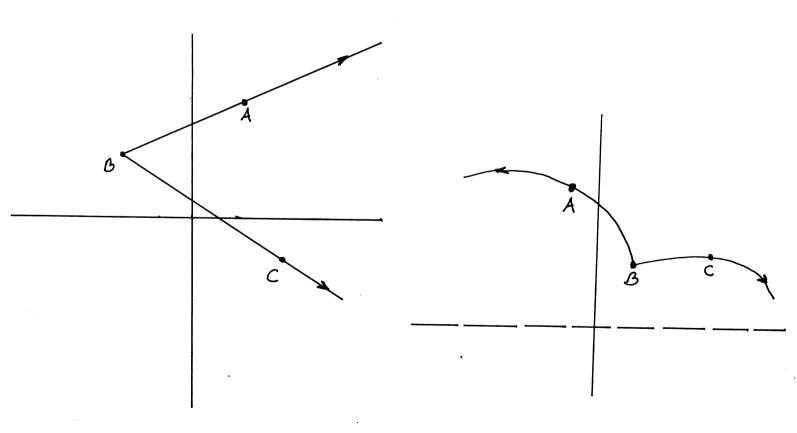
Hence BC = AC - AB = PR - PQ = QR, so $\overline{BC} \simeq \overline{QR}$, as required.

Uglavi i trouglori

Vazno je du primjetimo da c'emo ugao posmatiati kao skup, ne kao broj npr. 45°. Kasnije c'emo uvesti brojeve kao osobine uglova kad definiziemo sta znaci mjera ugla.

Definicija (\$ABC)
nekolinearne
Ako su A, B; C tri Vtačke u metričnoj geometriji
tada je ugao \$ABC skup

*ABC = BA () BC = pp[B,4) v pp [B,C)



Primjer: uylora u Euklidoroj i Poincaré-oroj ravni.

Lema

U metričnoj geometriji, B je jedina ekstremna tačka ugla XABC.

Skica dobuza:

ZexABC; Z+B => Z prolazna tačka xABC ZexABC; Z+B => ili ZeBA; ili ZeBC ZeBA, Z+B => $BA = BZ => 30 \in BZ => 0$ $D \in BA$; Z pe između, dvije tačke ugla xABC, B; O

B nije prolazna tačka *ABC X-B-Y, X, $Y \in XABC$ ili $X \in \overrightarrow{BA}$ ili $X \in \overrightarrow{BC}$ $X \in \overrightarrow{BA}$, $X \neq B$ Teor. Y-B-X $Y \in XABC$ $Y \in XABC$

Teorema (*ABC=*DEF => B=E)

U metricko; geometriji, ako je *ABC = *DEF tada je
B=E.

do kaz:

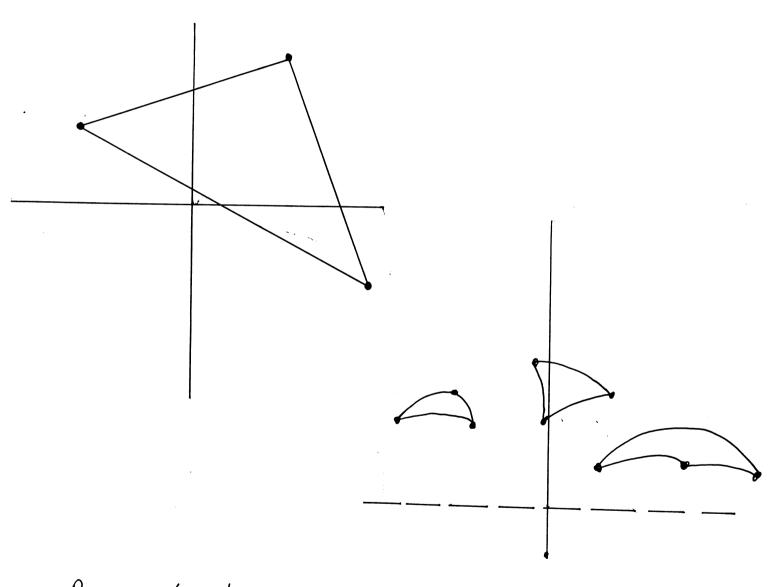
 $\{B\} = \{Z_i \in ABC \mid Z_j = ekstremna tačka ugla *ABC\}$ $= \{Z_i \in ADEF \mid Z_j = ekstremna tačka ugla *AEF\}$ $= \{E\}$

Definicija (vrh ugla *ABC)
Vrh ugla *ABC u metričnoj geometriji je tačka B.

Definicija (DABC)

Ako su {A,B,C} nekolineame tačke metrične geome bije

tada je trougao DABC skup $\Delta ABC = \overline{AB} \ U \ \overline{BC} \ U \ \overline{CA}$

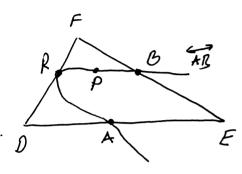


Primjeri trouglova u Euklidoroj; Bincaré-oroj ravní,

Lema U metričnoj geometriji, ako sa A, B; C tri nekolinearne tačke tada je A ekstremna tačka trougla AABC. Skica dokaza: D-A-E, DEEDABC => D, EEBC $D \in \overline{AB} \implies || D = B || || D \neq B$; E-A-B (O≠A, O-A-E) B D A E => E € AB EEAC IL EEBC => IL C-E-A-B IL C=E C- A-B AEC => A, B, C kolinearne #konfradekuja (A, B i C su nekolinearne) => D∉AB (=> E∈ AB, AC ili BC) Slicno D&AC. DEDABC => DEBC => EEBC => DEEBC D-A-E => A & BC => A, B, C kolinearne #kontradikaja Tačku A ne može Sihi bačku između dvije tačke tvougla SABC.

Pokazati da ako je DABC = DDEF u metričkoj geo-metriji tudu AB = p(A,B) sadrži tučno drije od tački $\mathcal{D}, \mathcal{E}, \mathcal{F}.$ SABC = ABUBCUCA = = \{ Meg | A-M-B ili B-M-C ili C-M-A ; | M=A ili M=B ili M=C \} DOEF = DEUEFUFD = = {NEY | D-N-E; |; E-N-F; |; F-N-D; |; N=D; |; N = E ; i N = FAB = { REY | R-A-B il: A-R-B il: A-B-R il: R=A il: R=B AB N AB = AB => AB N AB & DABC NAB AB S AB 1 DARC W DARC = DEF AB E DDEF Posmatrajno sad presjek AB N & D, E, F} 1° AB N { D, E, F} = \$ Tada $AB \cap \{0, \varepsilon, F\} = \emptyset \Rightarrow A, B \notin \{0, \varepsilon, F\}$, M € {0, E, F} YME {NEY | A-N-B| A,BEDABC = DOEF => AE {MEG | D-M-E; | E-M-F; | F-M-D} BE {MEY | O-M-E; ! E-M-F; ! F-M-O} Mogui je jedan od stjødetih 6 slutajera:

(ii) D-A-E; E-B-F



ABC DOEF to becker R zer koju A-R-B

vvijedi de REDOEF,

RESOF, F) -> AB NSO, F) + D

kow her de less is

kontuchkuji

D-R-E => D, E \(A \)B

kontuchku

E-R-F => E, F \(A \)B

#kontra hkaji

• D-R-F

Praberino backus P tahu da R-P-B Kuto AR S DOEF => PEDOEF. 12 ssboy razloga Lao iznad imano da D-P-F

D-R-F
D-P-F
P, REAB

#kontradikcija

Prena hone ne nove vijediti D-A-E; E-B-F.

(iii) D-A-E; F-B-D

ZAVRITI ZA VIEZBU